If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-20u+12=0
a = 3; b = -20; c = +12;
Δ = b2-4ac
Δ = -202-4·3·12
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-16}{2*3}=\frac{4}{6} =2/3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+16}{2*3}=\frac{36}{6} =6 $
| 3(n+4)=24+2n | | .5x+6=16 | | 8s^2-18s-5=0 | | -0.5x+-1.2=-1 | | 3(n+12)=24+2n | | V^2-23v+22=0 | | 11x^2+16x-12=0 | | 3x+1.5=1x+5 | | 3c+6=14c+50 | | 98=x^2+20x | | 20d^2+41d+2=0 | | 5n^2-23n-10=0 | | 2(c+2)=5(c+1 | | -37=-7x | | 3w^2+23w+14=0 | | h=10(52°) | | 98=(x)(+20)/2 | | 45x=25x-120 | | .8n=40 | | 15^2+2x-8^2=x^2 | | 2x-64.2=90 | | 1/8=2/5*x | | 3(4k-(1/3)=12k-1 | | -5(3x-8)+5=-15x+45 | | 12+2z=15 | | 12-2z=15 | | 1,068=6(x+18) | | 5^9x=625 | | −5(v-1)(−v-2)=0 | | 3x-15=5(x+2) | | -7u+34=-4(u-4) | | 48=4x+(x-2) |